Value-sharing of meromorphic functions on a Riemann surface
نویسنده
چکیده
We present some results on two meromorphic functions from S to Ĉ sharing a number of values where S is a Riemann surface of one of the following types: compact, compact minus finitely many points, the unit disk, a torus, the complex plane. Mathematics Subject Classification (2000): 30D35, 30F10
منابع مشابه
Uniqueness of meromorphic functions ans Q-differential polynomials sharing small functions
The paper concerns interesting problems related to the field of Complex Analysis, in particular, Nevanlinna theory of meromorphic functions. We have studied certain uniqueness problem on differential polynomials of meromorphic functions sharing a small function. Outside, in this paper, we also consider the uniqueness of $q-$ shift difference - differential polynomials of mero...
متن کاملOn uniqueness of meromorphic functions sharing five small functions on annuli
The purpose of this article is to investigate the uniqueness of meromorphic functions sharing five small functions on annuli.
متن کاملFive-value rich lines, Borel directions and uniqueness of meromorphic functions
For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...
متن کاملThe resultant on compact Riemann surfaces
We introduce a notion of resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the ...
متن کاملCounting Meromorphic Functions with Critical Points of Large Multiplicities
We study the number of meromorphic functions on a Riemann surface with given critical values and prescribed multiplicities of critical points and values. When the Riemann surface is CP1 and the function is a polynomial, we give an elementary way of finding this number. In the general case, we show that, as the multiplicities of critical points tend to infinity, the asymptotic for the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009